PHYSICAL REVIEW E 77, 016203 (2008)

Hydrodynamic Lyapunov modes and strong stochasticity threshold in the dynamic XY model:
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Crossover from weak to strong chaos in high-dimensional Hamiltonian systems at the strong stochasticity
threshold (SST) was anticipated to indicate a global transition in the geometric structure of phase space. Our
recent study of Fermi-Pasta-Ulam models showed that corresponding to this transition the energy density
dependence of all Lyapunov exponents is identical apart from a scaling factor. The current investigation of the
dynamic XY model discovers an alternative scenario for the energy dependence of the system dynamics at
SSTs. Though similar in tendency, the Lyapunov exponents now show individually different energy dependen-
cies except in the near-harmonic regime. Such a finding restricts the use of indices such as the largest
Lyapunov exponent and the Ricci curvatures to characterize the global transition in the dynamics of high-
dimensional Hamiltonian systems. These observations are consistent with our conjecture that the quasi-isotropy
assumption works well only when parametric resonances are the dominant sources of dynamical instabilities.
Moreover, numerical simulations demonstrate the existence of hydrodynamical Lyapunov modes (HLMs) in
the dynamic XY model and show that corresponding to the crossover in the Lyapunov exponents there is also
a smooth transition in the energy density dependence of significance measures of HLMs. In particular, our

numerical results confirm that strong chaos is essential for the appearance of HLMs.
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I. INTRODUCTION

During the past decades one observes a continuously
growing research interest in the nonlinear dynamics of high-
dimensional Hamiltonian systems. They are partially moti-
vated by the hope to explain some fundamental issues at the
basis of statistical mechanics from the point of view of non-
linear dynamics [1-6]. One well-known example is the nu-
merical experiment performed by Fermi, Pasta, and Ulam
(FPU) in 1955 [7] attempting to check whether a high-
dimensional Hamiltonian system starting from nonequilib-
rium initial conditions would relax to equilibrium, eventu-
ally. Their observation of the recurrent flow of energy among
normal modes strongly challenged the validity of statistical
mechanics in high-dimensional nonintegrable Hamiltonian
systems and initiated a lot of research efforts during the past
half century [8].

One promising explanation to the FPU puzzle, which
emerged, relates it to the existence of a threshold energy for
stochasticity or equipartition. Such a point of view is consis-
tent with the Kolmogorov-Arnold-Moser (KAM) theory [9]
and was supported by some early numerical experiments
[10-12]. Benefiting from the accelerating development of the
power of modern computers, further numerical work was
carried out in the last two decades clarifying that the previ-
ously claimed threshold does not characterize a transition
from regular to chaotic states but a smooth transition in the
system dynamics from weak to strong chaos [13,14]. There-
fore, it is referred to as the strong stochasticity threshold
(SST) in the literature [14]. Relaxation times and the largest
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Lyapunov exponent show different scaling behavior in the
regimes beyond and below the SST [13,14]. Similar results
were reported for a large number of systems [15-18] and
indicate that the existence of the SST is a quite general as-
pect of Hamiltonian systems with many degrees of freedom.

In a series of recent papers [19-23] Pettini and co-
workers developed the geometric theory of Hamiltonian
chaos. Within such a frame, trajectories of Hamiltonian sys-
tems correspond to the geodesics of a Riemannian manifold
with a suitable metric. Dynamic instability of trajectories is
related to the curvature properties of the ambient manifold.
More precisely, it is governed by the Jacobi-Levi-Civita
equation for the geodesic variations. As a main tool for tack-
ling chaos in Hamiltonian systems, such a tensor equation is
too complex to be handled for high dimensional systems.
Approximations are often necessary to reduce the tensor
equation of Jacobi-Levi-Civita to some simpler scalar equa-
tions. Instead of the Riemannian curvature tensor in the
Jacobi-Levi-Civita equation, the simpler scalar curvature or
Ricci curvature is used as index of geometric changes in the
structure of the ambient manifold. Especially, the transition
in the system dynamics at the SST is demonstrated to indi-
cate a dramatic change in the geometric structure of configu-
ration space [19,20].

Recently, Posch and co-workers discovered that some in-
teresting information is contained in Lyapunov vectors of a
high dimensional system with certain continuous symme-
tries. They demonstrated the existence of wavelike collective
structures in Lyapunov vectors associated with near-zero
Lyapunov exponents [24]. They were called hydrodynamic
Lyapunov modes (HLMs) owing to their long wavelength
and long relaxation time nature. Due to the potential impor-
tance for understanding the fundamental problems of statis-
tical mechanics from the point of view of nonlinear dynam-
ics [25-35] HLMs have already been investigated in various
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systems ranging from many-particle systems with hard-core
[25,29] or soft-potential interaction [31-33], products of
random matrices [26], and coupled map lattices [34] to the
Kuramato-Shivashinsky equation [35].

We reported in a recent paper on the variation of
Lyapunov spectra and hydrodynamic Lyapunov modes
(HLMsS) in FPU models in connection with the SST [36]. We
found that all Lyapunov exponents as function of the energy
density vary in a similar way. This means that the data for
the energy density dependence of all Lyapunov exponents
collapse to a master curve after a simple rescaling. This ob-
servation on one hand supports the anticipation that the
smooth transition in the system dynamics at the SST reflects
a global change in the geometric structure of phase space,
and it explains on the other hand why the approximation of
quasi-isotropy works very well in the analytical estimation of
the largest Lyapunov exponent in FPU models [22]. Corre-
sponding to such a change in the Lyapunov exponents,
HLMs are found to behave differently in the regimes of weak
and strong chaos, respectively. Especially strong chaos is
found to be an essential factor for the appearance of signifi-
cant HLMs.

A known fact from previous investigations is that in some
systems like the dynamic XY model the occurrence of nega-
tive curvature acts as an additional source of dynamical in-
stability. Moreover, the analytical estimation of the largest
Lyapunov exponent based on the quasi-isotropy approxima-
tion shows rather large deviations from the numerical results
in contrast to its success in FPU models [22,23]. The main
issue to be addressed in the present contribution is to find out
the geometric origin and further indications of the difference
between XY-spin systems and FPU models. We study the
energy density dependence of the whole Lyapunov spectrum
and HLMs in the dynamic XY model in comparison with
FPU models [37-39]. We found that, although all Lyapunov
exponents experience a characteristic change in their energy
density dependence at the SST, they differ in their individual
energy dependence. These observations indicate the exis-
tence of alternative scenarios in the change of the geometric
structure of configuration space in connection with the SST.
HLMs are found to exhibit different behavior in the regimes
of weak and strong chaos. The essence of strong chaos for
the existence of significant HLMs is confirmed again by our
simulations.

The remainder of the paper is organized as follows. The
model system under investigation and the details of the nu-
merical simulations are given in Sec. II. In order to facilitate
comparison, we will present in Sec. III the main change in
the dynamics of the XY model in connection with SST. In
Sec. IV the results of numerical simulations with respect to
the variation of the Lyapunov spectrum and HLMs will be
presented. Finally we will summarize the main results and
end the paper with a short discussion. Complementary to the
results reported in the main body of this paper, we show in
the Appendix the results for the lattice ¢* model. The sce-
nario for the variation of the Lyapunov exponents there is
rather similar to that of FPU models.
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II. MODEL AND DETAILS OF NUMERICAL
SIMULATIONS

Our one-dimensional dynamic XY model is described by a
Hamiltonian of the form [37-39]

2
H=E |:%+V(01+1—01):|, (1)

=1

where 6, denotes the displacement of the /th particle from its
equilibrium position, p;= 6, is the conjugate momentum, and
periodic boundary conditions 6,,; =6, are used. The potential
V(z) is of the form

V(z)=1-cosz. (2)

Note the inclusion of the additional kinetic energy term in
Hamiltonian Eq. (1) at variance from the conventional XY
model. The energy density e=E/L, where E is the total en-
ergy, is used as a control parameter to investigate the varia-
tion in Lyapunov characteristics.

One may recognize that the Hamiltonian Eq. (1) is invari-
ant under the variable transformation 6] = 6;+c¢ with an arbi-
trary constant ¢, since only internal forces among particles
are present there. In consequence, the total momentum P
EEf;lp, is conserved. The appearance of HLMs is just due
to the spontaneous breaking of such a symmetry in the tan-
gent space dynamics.

The equations of motion, which can be easily derived
from the given Hamiltonian, are integrated with a fourth or-
der Runge-Kutta algorithm [40]. The so-called standard
method is adopted to calculate the Lyapunov exponents and
Lyapunov vectors [41].

To detect the coherent structures in Lyapunov vectors and
to characterize the hydrodynamic Lyapunov modes quantita-
tively, we have introduced the correlation function theory for
Lyapunov vectors [31,32,34]. Lets recall it briefly here. A
dynamical variable called LV fluctuation density is defined as

L

UNr,0) =D, 86 8(r—r), (3)

=1

where r; is the position coordinate of the /th particle and
{505“)1} is the coordinate component of the ath Lyapunov
vector for the /th particle. The position coordinate is simply
r;=1-a for the lattice models used here. We set the lattice
constant a=1 throughout the remainder of this paper.

The so-called static LV structure factor is defined as

SL k) = UL OUL ). (4)

where (---) represents the time average and Z/lia)(t)z fu'@
X (r,1)e*7dr=3L | 56'"e~*" is the spatial Fourier transfor-
mation of U®(r,1). As can be easily seen from Eq. (4), the
static LV structure factor is nothing but the spatial Fourier
spectrum of the LV fluctuation density 24(®)(r, ). Therefore it
is suited for the characterization of the spatial structure of
Lyapunov vectors.

016203-2



HYDRODYNAMIC LYAPUNOV MODES AND STRONG...

o -2x10°

-4><]O3 * | | —

6x10' [ I * x @

_ 310 -
s C

0 — —

3x10°

FIG. 1. (Color online) Time evolution of the coordinate 6; for
two randomly selected elements for four cases with energy density
(a) €=0.04, (b) 0.4, (c) 4, and (d) 40, respectively. Notice the
change in the system dynamics with increasing energy density.

III. TRANSITIONS IN THE DYNAMICS
OF THE XY MODEL

We present the main change in the dynamics of the dy-
namic XY model with variation of the energy density. The
qualitative change in the system dynamics will help to coor-
dinate transitions in Lyapunov characteristics.

The time evolutions of the coordinate 6, for two randomly
selected elements are presented in Fig. 1 for various energy
densities. When the energy density is low enough, all ele-
ments in the lattice just liberate around their equilibrium po-
sitions [see panel (a)]. With increasing the energy density
beyond a certain threshold value, the dynamics of elements
show intermittent switching between liberation and rotation
[see panel (b)]. The probability for rotational motion in-
creases and the coherence among dynamics of different ele-
ments becomes weaker with increasing the energy density
[see panel (c)]. Finally all elements rotate nearly freely as the
energy density is large enough [see panel (d)]. Such obser-
vations are consistent with the existence of two integrable
limits in this system, the harmonic limit at small energy den-
sity and the free rotation limit at high energy density respec-
tively [16].

We show in Fig. 2 the variation of the quantity (#7) with
time , where (- --) represents an average over elements. Dis-
tinct long-time behavior is observed for the cases corre-
sponding to Fig. 1. Fitting the evolution of (#7) with  to a
power law function (912> ~ 7 yields a characteristic exponent
v for the system dynamics. The variation of y with the en-
ergy density € is shown in Fig. 2(b). Three regimes can
roughly be classified, the near-harmonic regime e<e,
~(.14 with y=0, the free rotation regime €> €, =~ 10 with
y=2 and the strong chaotic regime €,; < e<e¢€,, with y=1.
The threshold values €,.; and €., are in good agreement with
the previous analytical estimation in [16] by using Gibbsian
estimates of dynamical observables.

The variation of the kinetic temperature TE(pf} and the
potential energy density v=V/N with the energy density €
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FIG. 2. (Color online) (a) Time evolution of the quantity <6,2) for
the corresponding cases shown in Fig. 1. (b) The variation of the
exponent y with the energy density e. Notice the existence of three
regimes with y=0, y=1, and y=2, respectively. The two thresh-
old values are €.,=0.14 and €, = 10.

is shown in Fig. 3. Both quantities exhibit a crossover at
€y=~1. In the low energy regime €<¢,,, one has T=¢€ and
v=0.5€ which implies the equal partition of the total energy
between kinetic and potential energy parts. In the high en-
ergy regime €>> €, the potential energy density tends to
saturate to a constant 1.0 while the temperature 7" and the
kinetic energy density increase linearly with €. Inspection of
the system dynamics shows that it is dominated by libration
and rotation in the regime below and beyond the threshold
value €, respectively.

In summary, the dynamic XY model has four different
types of states in the regimes separated by the three threshold
values. They are the weak chaotic state dominated by libra-
tion (WL) with €< €, the strong chaotic state dominated by
libration (SL) with €.,<e<g¢,, the strong chaotic state
dominated by rotation (SR) with €, < e<e.,, and the weak
chaotic state dominated by rotation (WR) with > €,,. Three
transitions between these chaotic states take place at the
three threshold values €., €., and €, respectively. We will
show below the change of the Lyapunov characteristics cor-
responding to these transitions in the system dynamics.
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FIG. 3. (Color online) Energy density dependence of (a) the
temperature 7 and (b) the potential energy density v. Both quanti-
ties change their behavior in a regime around €~ 1.
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FIG. 4. Lyapunov spectrum of a case with e=4. Due to the
Hamiltonian nature of the system dynamics the Lyapunov spectrum
has the symmetry AN@=_\CL-1-a) " Aq can be seen from the inset,
the system has four zero-value Lyapunov exponents. The system
size used here is L=64.

IV. NUMERICAL RESULTS FOR LYAPUNOV SPECTRA
AND HYDRODYNAMIC LYAPUNOV MODES

A. Transitions in Lyapunov exponents

The Lyapunov spectrum for the case e=4 is shown in Fig.
4. 1t has the symmetry A(¥'=—\?L=1-%) in consequence of the
symplectic structure of Hamiltonian systems. As can be seen
from the inset, the system has four zero-value Lyapunov ex-
ponents, which are related to the space and time translational
invariance symmetries of the system and the associated con-
served quantities, the total energy and the total momentum.
The symmetry of the spectrum and the appearance of four
zero Lyapunov exponents also demonstrates that our integra-
tion algorithm keeps the symplectic structure of the investi-
gated system very well.

We present in Fig. 5 the change of the largest Lyapunov
exponent \©) with increasing energy density €. In the low
energy regime €< €., the data can be fitted very well by a
power law function \¥~ €f with B=2.0 [22]. Similar be-
havior has been observed in the FPU models in the low
energy regime, which turns out to be a characteristic feature
of near-harmonic dynamics. The ascent of \© with e first
becomes much steeper and then decreases as € increases be-
yond the value €,;. It reaches a maximum around €,,~1.
With further increasing e, A starts to decrease. But the rate
of descent is much smaller than the rates of ascent in other
regimes. The profile of the overall variation of N0 forms a
kneelike structure (see Fig. 5).
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FIG. 5. (Color online) Largest Lyapunov exponent A vs en-
ergy density € for the dynamic XY model. The € dependence of \(?)
is fitted to a power law with the exponent 2.0 in the low-energy
regime e<e,; =~0.14.
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FIG. 6. (Color online) e dependence of typical Lyapunov expo-
nents in the positive branch of the Lyapunov spectrum for the dy-
namic XY model. Here, a takes the value from 0 to 60 with the
increment 10 (from top to bottom). The density of the Kolmogorov-
Sinai entropy p,=hgg/N is plotted as a dashed line. Obviously,
except in the low-energy regime €< €, the profiles of change of all
Lyapunov exponents are different from each other.

Besides the above-mentioned change in the € dependence
of the largest Lyapunov exponent, we explore also changes
in other Lyapunov exponents. The motivation lies in the fact
that in principle the largest Lyapunov exponent provides only
information about the dynamic instability along a certain di-
rection and to gain a complete characterization of a global
structure change of phase space requires the full set of
Lyapunov exponents and Lyapunov vectors. In Fig. 6 the €
dependence of other Lyapunov exponents sampled from the
positive branch of the Lyapunov spectrum is presented. No-
tice that in the near-harmonic regime e<<e¢,.; all of them fol-
low the same tendency as the largest Lyapunov exponent. As
€ goes beyond €., they continue to increase until reaching a
maximum around the value €,,~ 1 and decrease in the high
energy regime. Although the general tendency of change in
the regime €> €, is the same for all Lyapunov exponents,
detailed profiles are quite different from each other, for in-
stance the rates of change in the intermediate- and high-
energy regimes. This by considering the variation of the nor-
malized Lyapunov exponents A“(e)/\?)(¢,) as presented in
Fig. 7 becomes clearly visible. In the near-harmonic regime
€<e€. all data from different Lyapunov exponents collapse
roughly on a single curve. Apart from the largest Lyapunov
exponent, the collapse for data of all others continues to
€y =~ 1. The differences between the rescaled Lyapunov ex-
ponents increase with further increasing the energy density e.
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FIG. 7. (Color online) Normalized Lyapunov exponents \(®
X (€)/N¥(g) vs energy density e. Here the more or less arbitrary
value €;,=0.1 was chosen. Note that except in the near-harmonic
regime €< €. data for different Lyapunov exponents scatter greatly
instead of collapsing on a master curve.
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FIG. 8. (Color online) Lyapunov exponents normalized by the
entropy density p, vs energy density € for the dynamic XY model.

To show the difference in the energy density dependence
of Lyapunov exponents more clearly, we present in Fig. 8 the
normalized Lyapunov exponents \'?/ p,, where pj,=hys/L is
the density of the Kolmogorov-Sinai entropy. These quanti-
ties are expected to be independent of e, if all Lyapunov
exponents have exactly identical € dependence. The figure
indicates that, the variations of these quantities for all
Lyapunov exponents are rather small in the near-harmonic
regime €<e,;. And \9/p, attains a local maximum at e
~(.4 and bends up as € goes beyond ¢,,. The variations in
other \@/p,, are still very small in the regime €, < €< ey,
and they bend down one after another in the regime €> ¢,.
Notice that the largest Lyapunov becomes already quite large
compared to other Lyapunov exponents at =30 and the
Kolmogorov-Sinai entropy is therefore highly dominated
by A©.

To characterize the fluctuations in Lyapunov instabilities
of system trajectories the so-called finite-time Lyapunov ex-
ponents (FTLEs) )\(Ta) are usually used [25]. The finite-time
Lyapunov exponent A\, represents the average instabilities of
trajectory segments of duration 7 and it approaches the
normal Lyapunov exponent as 7 goes to infinity, i.e.,
lim,_,_..A,=\. In Fig. 9 we present the standard deviation of
FTLEs O'()\Era)), a measure of the fluctuations of finite-time
Lyapunov exponents A, with the variation of energy density
€. As can be seen from the plot, fluctuations of all FTLEs are
quite small and stay constant in the near-harmonic regime
€<é€.,. Moreover, in this regime the values of a()\(T“)) are
roughly identical for all FTLEs, which reflects the isotropic
nature of the system dynamics in the near-harmonic regime.
With increasing € beyond €., the quantity o-()\(TO)) starts to
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0.004 ’ ' i
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FIG. 9. (Color online) Standard deviations of the finite-time
Lyapunov exponents a()\ia)) vs energy density € for the dynamic
XY model. Dashed lines indicate the transition values €.;=0.14 and
ey=1.
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deviate from the other FTLEs and increases with €. With
further increasing € the standard deviation 0'()\(:‘)) of the
other FTLEs also start to increase and deviate from the rest
one by one. This splitting process continues to €= €,,. Be-
yond €, each FTLE has its own profile of change of o with
€. It seems that with increasing € beyond 30 all 0()\(7“)) be-
come quite small and tend to be the same except for U(A(TO)).

The correspondence between the transitions in Lyapunov
exponents and the change in the system dynamics mentioned
in Sec. IIT supports the point of view that these changes in
the system dynamics manifest a global change in the geomet-
ric structure of phase space. The observed differences in the
energy density dependencies of Lyapunov exponents indicate
the existence of an alternative scenario of change in the geo-
metric structure of configuration space in contrast to the one
for FPU models. The so-called quasi-isotropy assumption
has been used in the analytical calculation of the largest
Lyapunov exponent [22]. As we pointed out already [36], the
success of this seemingly unreasonable assumption in the
FPU models has its origin in the strong similarity among the
overall profiles of all Lyapunov exponents as the energy den-
sity is varied. Our observations here are consistent with such
a point of view and explain why in the dynamic XY model
there are large differences between numerical results and the
analytical calculation of Lyapunov exponent using the quasi-
isotropy assumption [22].

B. Transitions in HLMs

We now turn to the characterization of Lyapunov vectors.
The focus here will be on the Lyapunov vectors associated
with near-zero Lyapunov exponents. Our recent investigation
of FPU models [36] has identified the existence of coherent
collective structures in these Lyapunov vectors and observed
a characteristic change in the significance of HLMs corre-
sponding to the crossover from weak to strong chaos at the
SST.

The profile of one typical Lyapunov vector and the corre-
sponding static LV structure factor Sftaa)(k) is shown in Fig.
10. As can be seen this Lyapunov vector, which is associated
with a near-zero Lyapunov exponent, is spatially extended.
No clearly visible long wavelength coherent structure, how-
ever, can be directly seen from the plot of the profile. To
identify the possibly existing vague modes, we adopt the
measure of the static LV structure factor defined in Eq. (4).
To simplify the notation, we will omit the subscript and su-
perscript of Sflaa)(k) throughout the remainder of this paper.
The corresponding static LV structure factor is presented in
panel (b) of Fig. 10. A characteristic feature is the existence
of a relatively sharp peak at k.

We present in Fig. 11 the contour plot of the static LV
structure factors for the whole set of Lyapunov vectors. Ob-
viously, the static LV structure factors of Lyapunov vectors
associated with near-zero Lyapunov exponents are strongly
dominated by certain components with low wave numbers.
Moreover, the wave number k,,,, of the dominant peak ap-
proaches 27/ L gradually as the index « of Lyapunov vectors
reaches the center of the Lyapunov spectrum a=64, where
the associated Lyapunov exponents become zero. Notice that
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FIG. 10. (a) Profile of a Lyapunov vector with a=46 for a
randomly selected value of 7 and (b) the corresponding static LV
structure factor Sim)(k) for the dynamic XY model with e=4. The
Lyapunov spectrum for e=4 is shown in Fig. 4. Here, k., is de-
fined as the wave number of the highest peak in the spectrum
S k).

2/ L is the smallest nontrivial wave-number allowed by the
periodic boundary conditions we used. For a quantitative
characterization of the dominance of these peaks, two mea-
sures S(kp,) and the spectral entropy Hg are used (see Fig.
12). Here S(ky,,,) denotes the height of the dominant peak of
the static structure factor of a given Lyapunov vector and the
spectral entropy Hy is defined as Hy=-2S(k)In S(k). A small

0.5

FIG. 11. (Color online) (a) Contour plot of static LV structure
factors for the dynamic XY model with e=4. (b) Variation of k.,
with the Lyapunov index «. The Lyapunov vectors with a= 64 are
dominated by components with wave numbers comparable to 27/ L,
which is the smallest nontrivial wave number permitted by the pe-
riodic boundary conditions used. These facts together imply the
existence of hydrodynamic Lyapunov modes in this system.
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FIG. 12. (a) S(kp,) and (b) spectral entropy Hg

=-35(k)In S(k) vs a for the dynamic XY model with e=4. The
quantities S, (€), as(e), Hpin(e), and ay(e) will be used to
measure the significance of HLMs.

value of Hg and a large value of S(k,) indicate the exis-
tence of a sharp peak in the static LV structure factor under
investigation. As can be seen from Fig. 12 both quantities
attain their extreme values at a=54. All these numerical
results together demonstrate the existence of HLMs in this
system.

To facilitate the study of the energy density dependence of
HLMs, we use the measures used already in Ref. [36] to
quantify the significance of HLMs in a case with given en-
ergy density. They are the extreme values S,,(e) and
H,i,(€) as indicated in Fig. 12. Roughly speaking, S..(€)
represents the height of the highest peak in the static struc-
ture factors of all Lyapunov vectors of a case with given €,
and H,,;, measures the significance of this peak. For com-
pleteness the normalized index ay/L, where the spectral en-
tropy is minimal, is also considered.

The variation of these quantities with the energy density €
is plotted in Fig. 13. The threshold values €.,=0.14, €.,
=1 and €),= 10 mediating the transitions in the system dy-
namics and in the Lyapunov exponents are marked as dashed
lines. Obviously, these significance measures for HLMs also
change roughly around these threshold values. As can be
seen from the figure, the normalized index ay/L is rather
small in the near-harmonic regime €<<e. and in the free-
rotation regime €> €.,, which means that the corresponding
Lyapunov exponents are close to the largest Lyapunov expo-
nent. Thus the associated highest peaks do not represent
HLMs. In contrast, the values of the normalized indices
ay/ L are relatively large and close to 1.0 in the regime €,
<€e<e€,. A value of ay of order L implies that near-zero
Lyapunov exponents are associated with strong peaks in the
structure function. Therefore the associated highest peaks
represent certain HLMSs. In comparison with Figs. 21 and 22
of Ref. [36] one can see that the scenario of change in these
significance measures at €., is quite similar to that in the
FPU-B model [36]. This may be due to the fact that the
parametric resonance is the only (dominant) mechanism of
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FIG. 13. (a) Spax(€), (b) Hyin and (c) the normalized index
ay/ L vs € for the dynamic XY model. Here, the threshold values of
the energy density for transitions in the Lyapunov spectrum are
shown as dashed lines. Notice the change in the behavior of these
quantities at these threshold values.

dynamical instability there. As already mentioned the occur-
rence of negative curvature serves as an additional source of
dynamical instabilities in the XY model [22]. With increasing
€ from €., the probability of occurrence of negative curva-
tures increases. The increase of Sy, (€) becomes even faster
with increasing e beyond the threshold value €, and the
descent of H,,;,(€) becomes slower correspondingly since the
occurrence of negative curvatures seems to become the
dominant mechanism of dynamical instability. The occur-
rence of negative curvatures enhances the chaoticity of our
system and leads to the appearance of more significant
HLMs consequently. Above e=¢€., the dynamics becomes
more regular again, and therefore €., is interpreted as SST
mediating a transition from weak chaotic (€> €,,) to strong
chaotic (€,,<e€e<e€.,) motion characterized by a negative
curvature of the ambient manifold. This explains the de-
crease of S, and the corresponding increase of H,;, as the
energy density is increased beyond €,,. Notice that the cross-
over points of these significance measures of HLMs all lie in
the regimes around the threshold energy densities of corre-
sponding transitions in the Lyapunov spectrum. This implies
that both the transitions in the Lyapunov spectrum and in the
Lyapunov vectors at the SSTs are possibly manifestations of
the same geometric changes in the structure of phase space.
To be specific, the four dynamic regimes WL (e<g,),
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SL (€., <€<e¢€y), SR (e, <€e<E¢€.,), and WR (e>¢€,,) and the
corresponding transitions are manifested not only in the
Lyapunov exponents but also in the character of the
Lyapunov vectors. Compared to the cases of the FPU models
[36] the scenario of change in the dynamic XY model is
obviously more complex.

V. SUMMARY AND DISCUSSION

In this paper, we investigated the energy density depen-
dence of Lyapunov exponents and HLMs in the dynamic XY
model. The scenario of change in the Lyapunov exponents in
this model is different from that of FPU models. To be pre-
cise, the profiles of change of all Lyapunov exponents with
varying energy density are different from each other except
in the near-harmonic regime. HLMs are demonstrated to ex-
ist in this system. The significance measures of HLMs
change significantly corresponding to transitions in the
Lyapunov exponents. These facts support the anticipation
that the transitions in the system dynamics at the SSTs mani-
fest global changes in the geometric structure of phase space.

In contrast to the FPU models and the lattice ¢* model the
occurrence of negative curvatures serves as an additional
source of dynamical instabilities in the dynamical XY model.
This may be the very reason why the scenario of change in
Lyapunov characteristics of the dynamic XY model is differ-
ent from and more complex than that of the formers.

In the literature simple measures such as the largest
Lyapunov exponent and the scalar curvature or the Ricci
curvature are frequently used to characterize the geometric
change in the phase space of high-dimensional Hamiltonian
systems. As pointed out in Ref. [19], one may obtain “some
synthetic indicator of chaos similar to the largest Lyapunov
exponent” by using the scalar or Ricci curvatures. In systems
such as the FPU models and the lattice ¢* models all
Lyapunov exponents contain nearly the same information as
the largest Lyapunov exponent. Therefore the use of only the
largest Lyapunov exponent or the scalar curvature or the
Ricci curvatures seems to be sufficient. Our current investi-
gation shows that the scenario of change in the geometric
structure of phase space is not always as simple as in the
FPU models. In general each Lyapunov exponent encodes
different information about the dynamical instability along a
certain direction. In principle, using all of them together, or
equivalently the Riemannian curvature tensor, provides a
complete characterization of the dynamical instability of the
considered systems. Our results thus restrict the use of only
such crude measures to characterize transitions in the dynam-
ics of high-dimensional Hamiltonian systems.

Recently the geometric picture of Hamiltonian chaos has
been used to characterize also transitions in the dynamics of
biomacromolecules such as protein folding [42,43]. The en-
ergy landscape of these macromolecules is in general quite
complex and the functionally relevant motions of these mac-
romolecules are often strongly anharmonic. For instance, es-
caping over potential barriers turns out to be an important
ingredient of the interwell motion of these macromolecules.
Therefore, segments of the energy landscape with negative
curvatures are encountered frequently. We expect that the
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scenario of change in the dynamics of these systems should
be similar to what we reported for the dynamic XY model in
some respects.
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APPENDIX: SCENARIO OF CHANGE OF LYAPUNOV
EXPONENTS IN THE LATTICE ¢* MODEL

In this appendix we show the change in the scaling be-
havior of the energy density dependence of Lyapunov expo-
nents in the lattice ¢* model [14]. The Hamiltonian of this
model reads

L 2
H=2 % + (1 — @)+ %mz%z + iWP? . (A1)
I=1
where ¢; denotes the displacement of the /th particle from its
equilibrium position, p;=¢ is the conjugate momentum.
Other quantities have the same meaning as in Eq. (1) and the
constants take the values m=0.1 and w=0.01.

Notice that the existence of an on-site potential in the
lattice ¢* model breaks the translational symmetry in .
Therefore, no HLMs are expected in this system. Numerical
simulations confirm this point and we show below the energy
density dependence of Lyapunov exponents.

As can be seen in Fig. 14, the scenario of change in
Lyapunov exponents in the lattice ¢* model is rather similar
to that of the FPU models [36]. Profiles of the energy density
dependence of all Lyapunov exponents are quite similar, i.e.,
the speed of increase changes smoothly in the regime around
the SST threshold value €,=0.5 [14]. The collapse of res-
caled data \?(€)/\¥(¢,) is, however, not as perfect as in
the FPU models. This is also evident in the variation of
N 9(€)/ p;, with the energy density € shown in the panel (c).
These results suggest that the change in the geometric struc-
ture of phase space at the SST in the lattice ¢* model is
similar to that of the FPU models but different from that of
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FIG. 14. (Color online) Energy density dependence of (a)
Lyapunov exponents \®(e) sampled from the positive branch
of the Lyapunov spectrum, (b) normalized Lyapunov exponents
N9(€)/N¥(gy) with €y=0.4, and (c) Lyapunov exponents normal-
ized by the Kolmogorov-Sinai entropy density A%/ p, for the lattice
¢* model.

the dynamic XY model. Note that in a study of the time
scales to energy equipartition a comparison between the two
models was made [44]. The reported transitions in the equi-
partition time should be related to the change in the scaling
of Lyapunov exponents we observed here. On the basis of
the current different parameter settings a detailed comparison
cannot be made, but may be an interesting point for future
research.
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